160 research outputs found

    Search Tree Pruning for Progressive Neural Architecture Search

    Get PDF
    Our neural architecture search algorithm progressively searches a tree of neural network architectures. Child nodes are created by inserting new layers determined by a transition graph into a parent network up to a maximum depth and pruned when performance is worse than its parent. This increases efficiency but makes the algorithm greedy. Simpler networks are successfully found before more complex ones that can achieve benchmark performance similar to other top-performing networks

    Aerial Vehicles to Detect Maximum Volume of Plume Material Associated with Habitable Areas in Extreme Environments

    Get PDF
    Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions

    Helicoverpa armigera preference and performance on three cultivars of short-duration pigeonpea (Cajanus cajan): the importance of whole plant assays

    Get PDF
    BACKGROUND Helicoverpa armigera is a major pest of pigeonpea (Cajanus cajan). Efforts to develop pigeonpea varieties resistant to H. armigera attack have been met with limited success, despite reports of high levels of resistance to H. armigera in wild relatives of pigeonpea and reports of low to moderate levels of resistance in cultivated varieties. Here we examined H. armigera oviposition preference and larval performance on whole plants of three cultivars of short-duration pigeonpea: a susceptible control (ICPL 87) and two cultivars with purported host–plant resistance (ICPL 86012 and ICPL 88039). RESULTS In our no-choice oviposition experiment, H. armigera laid similar numbers of eggs on all three cultivars tested, but under choice conditions moths laid slightly more eggs on ICPL 88039. Larval growth and development were affected by cultivar, and larvae grew to the largest size (weight) and developed fastest on ICPL 86012. Moths laid most of their eggs on floral structures, sites where subsequent early instar larvae overwhelmingly fed. Experimentally placing neonate larvae at different locations on plants demonstrated that larvae placed on flowers experienced greater survival, faster development, and greater weight gain than those placed on leaves. The type and density of trichomes (a potential resistance trait) differed among cultivars and plant structures, but larvae selected to feed at sites where trichomes were absent. CONCLUSION Future work examining host–plant resistance against H. armigera should incorporate the behavioural preference of moths and larvae in experiments using whole plants as opposed to bioassays of excised plant parts in Petri dishes. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    What Defines a Host? Oviposition Behavior and Larval Performance of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Five Putative Host Plants

    Get PDF
    When an invasive species first breaches quarantine and establishes in yet another country, it invariably causes consternation for growers, in part because of incomplete understanding of the plants that are at risk. The Fall Armyworm, Spodoptera frugiperda (J.E. Smith) is the most recent example in Australia. The number of plants that this polyphagous noctuid is reported to attack is vast, including many crop species. Consequently, initial reactions from grower industry groups that perceived themselves at risk were to demand emergency use of insecticides. Yet the field evidence suggests that many crops might not be at risk and since S. frugiperda arrived in Australia, maize crops have suffered most damage, followed by sorghum. We question the accuracy of some of the claims of reported host plants of S. frugiperda and report experiments that compared oviposition behavior, neonate silking behavior, and larval performance on five crops: the known hosts maize and sorghum, and the putative hosts cotton, peanut, and pigeon pea. Maize ranked highest in all preference and performance measures, followed by sorghum and peanut, with pigeon pea and cotton ranking lowest. Although S. frugiperda can survive, develop, and pupate on the crop species we examined, cotton and pigeon pea are not preferred by the pest in either the larval or adult stages. We suggest that before a plant is listed as a host for a given insect that the evidence should be fully reported and carefully evaluated. Collecting an immature insect from a plant does not make that plant a host

    What Defines a Host? Oviposition Behavior and Larval Performance of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Five Putative Host Plants

    Get PDF
    When an invasive species first breaches quarantine and establishes in yet another country, it invariably causes consternation for growers, in part because of incomplete understanding of the plants that are at risk. The Fall Armyworm, Spodoptera frugiperda (J.E. Smith) is the most recent example in Australia. The number of plants that this polyphagous noctuid is reported to attack is vast, including many crop species. Consequently, initial reactions from grower industry groups that perceived themselves at risk were to demand emergency use of insecticides. Yet the field evidence suggests that many crops might not be at risk and since S. frugiperda arrived in Australia, maize crops have suffered most damage, followed by sorghum. We question the accuracy of some of the claims of reported host plants of S. frugiperda and report experiments that compared oviposition behavior, neonate silking behavior, and larval performance on five crops: the known hosts maize and sorghum, and the putative hosts cotton, peanut, and pigeon pea. Maize ranked highest in all preference and performance measures, followed by sorghum and peanut, with pigeon pea and cotton ranking lowest. Although S. frugiperda can survive, develop, and pupate on the crop species we examined, cotton and pigeon pea are not preferred by the pest in either the larval or adult stages. We suggest that before a plant is listed as a host for a given insect that the evidence should be fully reported and carefully evaluated. Collecting an immature insect from a plant does not make that plant a host

    Fusion of Visible and Thermal-Infrared Imagery for SLAM for Landing on Icy Moons

    Get PDF
    This paper addresses the problem of localization for landing on the surface of icy moons, like Europa or Enceladus. Due to the possibility of specular reflection as well as high bulk albedo, icy surfaces present new challenges that make traditional vision-based navigation systems relying on visible imagery unreliable. We propose augmenting visible light cameras with a thermal-infrared camera using inverse-depth parameterized monocular EKF-SLAM to address problems arising from the appearance of icy moons. Results were obtained from a novel procedural Europa surface simulation which models the appearance and the thermal properties simultaneously from physically-based methods. In this framework, we show that thermal features improve localization by 23% on average when compared to a visible camera. Moreover, fusing both sensing modalities increases the improvement in localization to 31% on average, compared to using a visible light camera alone

    Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions

    Get PDF
    The relative thermal requirements and tolerances of hymenopteran parasitoids and their hosts were investigated based on published data. The optimal temperature (Topt) for development of parasitoids was significantly lower than that for their hosts. Given the limited plasticity of insect responses to high temperatures and the proximity of Topt to critical thermal maxima, this suggests that host-parasitoid interactions could be negatively affected by increasing global temperatures. A modelling study of the interactions between the diamondback moth and its parasitoid Diadegma semiclausum in Australia indicated that predicted temperature increases will have a greater negative impact on the distribution of the parasitoid than on its host and that they could lead to its exclusion from some agricultural regions where it is currently important

    The psychological conditions for employee engagement in organizational change: Test of a change engagement model

    Get PDF
    In the contemporary world of work, organizational change is a constant. For change to be successful, employees need to be positive about implementing organizational change. Change engagement reflects the extent to which employees are enthusiastic about change, and willing to actively involve themselves in promoting and supporting ongoing organizational change. Drawing from Kahn’s engagement theory, the research aimed to assess the influence of change-related meaningful work, psychological safety, and self-efficacy as psychological preconditions for change engagement. The study also aimed to test the indirect associations of the change-related psychological preconditions with proactive work behavior through change engagement. Survey data from a Prolific sample (N = 297) were analyzed using confirmatory factor analysis and structural equations modeling. In support of the validity of the model, the results showed that change-related self-efficacy, psychological safety, and meaningfulness had significant direct effects on change engagement, explaining 88% of the variance. The change-related psychological conditions also had significant indirect effects on proactive work behavior through change engagement. The findings therefore suggest that employees who exhibit higher levels of change-related self-efficacy, psychological safety, and work meaningfulness are more likely to support and promote organizational change, and to proactively engage in innovative work behavior. In practical terms, organizations that create the psychological conditions for change could significantly improve employee motivation to change and to innovate, which in turn would increase the likelihood of successful organizational change, and improved organizational competitiveness. Study limitations and directions for future research are discussed
    • …
    corecore